User Modules (from Phase-III Macro System): Unterschied zwischen den Versionen

Aus phenixxenia.org
Zur Navigation springen Zur Suche springen
K
K
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 9: Zeile 9:
 
}}
 
}}
  
'''User Modules generate datasets carrying subtables controlled by user-supplied parms.'''
+
;User Modules generate datasets carrying subtables controlled by user-supplied parms.
 +
 
  
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
 
! Name  
 
! Name  
! Function
+
! Purpose
! Description
+
! Algorithm
 +
|- cellpadding = "15"
 +
| [[MACRO ROW BOOL|%ROW_BOOL()]]
 +
| '''Deliver PCT/count line dataset using 1 decode'''
 +
| Select single (‚true‘) value for categorial processing from *_freq and *_catv modules.
 +
|-
 +
| [[MACRO BLK BOOL|%BLK_BOOL()]]
 +
| '''Deliver PCT/count subtable dataset from N boolean variables'''
 +
| Loop with %row_bool over array of categorial values using same name prefix and  ‚true‘ value and output results as one block.
 +
|-
 +
| [[MACRO TAB BOOL|%TAB_BOOL()]]
 +
| '''Deliver PCT/count table dataset from N boolean blocks'''
 +
| Loop with %blk_bool over groups of variables using diferent name prefixes.
 +
|-
 +
| [[MACRO BLK CATV|%BLK_CATV()]]
 +
| '''Deliver PCT/count subtable dataset from 1 categorial variable'''
 +
| Use categorial processing from *_freq and *_catv modules with restricted paramater set.
 +
|-
 +
| [[MACRO TAB CATV|%TAB_CATV()]]
 +
| '''Deliver PCT/count table dataset from N categorial variables'''
 +
| Loop with %blk_catv over array of names using same processing parameters.
 +
|-
 +
| [[MACRO BLK CONV|%BLK_CONV()]]
 +
| '''Deliver univariate statistics subtable dataset from 1 continuous variable'''
 +
| Use continuous variable processing from *_univ and *_conv modules with restricted paramater set.
 +
|-
 +
| [[MACRO TAB CONV|%TAB_CONV()]]
 +
| '''Deliver univariate statistics table dataset from N continuous variables'''
 +
| Loop with %blk_conv over array of names using same set of processing parameters.
 
|-
 
|-
 
| [[MACRO TWO CATV|%TWO_CATV()]]  
 
| [[MACRO TWO CATV|%TWO_CATV()]]  
| '''Deliver PCT/count table from 2 nested categorial variables.'''  
+
| '''Deliver PCT/count table from 2 nested categorial variables'''  
| Perform nested processing of two categorial variables looping the context variable from the row_* modules over the categories of the "outer" categories.
+
| Perform nested processing of two categorial variables looping the context variable from the row_* modules over the categories of the ‚outer‘ categories.
 +
|-
 +
| [[MACRO TWO BOCA|%TWO_BOCA()]]
 +
| '''Deliver PCT/count table from boolean/categorial variables'''
 +
| Perform nested processing with only one (‚true‘) value select from the outer category.
 +
|-
 +
| [[MACRO TWO BOBO|%TWO_BOBO()]]
 +
| '''Deliver PCT/count table from 2 nested boolean variables'''
 +
| Perform nested processing with boolean (‚true value‘) selection from the outer category and an array of boolean selections inside like in %blk_bool. True values may be chosen for each inside variable separately.
 
|}
 
|}

Aktuelle Version vom 6. März 2014, 10:00 Uhr

Zurück

Übersicht

Vorwärts

User Modules generate datasets carrying subtables controlled by user-supplied parms.


Name Purpose Algorithm
%ROW_BOOL() Deliver PCT/count line dataset using 1 decode Select single (‚true‘) value for categorial processing from *_freq and *_catv modules.
%BLK_BOOL() Deliver PCT/count subtable dataset from N boolean variables Loop with %row_bool over array of categorial values using same name prefix and ‚true‘ value and output results as one block.
%TAB_BOOL() Deliver PCT/count table dataset from N boolean blocks Loop with %blk_bool over groups of variables using diferent name prefixes.
%BLK_CATV() Deliver PCT/count subtable dataset from 1 categorial variable Use categorial processing from *_freq and *_catv modules with restricted paramater set.
%TAB_CATV() Deliver PCT/count table dataset from N categorial variables Loop with %blk_catv over array of names using same processing parameters.
%BLK_CONV() Deliver univariate statistics subtable dataset from 1 continuous variable Use continuous variable processing from *_univ and *_conv modules with restricted paramater set.
%TAB_CONV() Deliver univariate statistics table dataset from N continuous variables Loop with %blk_conv over array of names using same set of processing parameters.
%TWO_CATV() Deliver PCT/count table from 2 nested categorial variables Perform nested processing of two categorial variables looping the context variable from the row_* modules over the categories of the ‚outer‘ categories.
%TWO_BOCA() Deliver PCT/count table from boolean/categorial variables Perform nested processing with only one (‚true‘) value select from the outer category.
%TWO_BOBO() Deliver PCT/count table from 2 nested boolean variables Perform nested processing with boolean (‚true value‘) selection from the outer category and an array of boolean selections inside like in %blk_bool. True values may be chosen for each inside variable separately.